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1. Introduction

At room temperature crosslinked elastomz: s are widely used as
tough engineering materials because of their high elongation at break,
coupled with unique elastic recovery properties. When chilled below ‘
its glass transition, rubber loses much of its toughness, as indicated
by brittle, shattering behaviour when impacted at 1iquid nitrogen
(-180°C) temperatures. This embrittlement process has been commercial-
1y exploited in cryogenic comminution [1-3]; fine powders can be
produced with low energy expenditure. Despite widespread recognition
of this transformation in behaviour, no attempts to measure Mode 1
fracture toughness at cryogenic temperatures have previously been
recorded for elastomers.

Fracture toughness (K), and energy release rates (G) have been
measured for both ductile and brittle polymers using a variety of
configurations [4]. From this compilation it is noted that for poly-
butadiene rubbers in tearing Mode III, Glc ranges from threshold values
of about 20 J m~? (highly swollen and at elevated temperatures) [5] to
a maximum of approximately 1 [5] to 3 kd m™2 [6]. As crosslink
density increases (i.e. Mc decreases), threshold fracture energy
decreases [5].

For a linear thermoplastic with Tg above 20°C, many methods are
available for convenient measurement of K and G; no serious constraints
upon specimen geometry exist, and crack length parameter a can be
readily measured in situ. For many temperatures and strain rates,
PMA's of varying molecular weight show a quite narrow range of tough-

and K

ness values, with G, ranging from 100 to 1000 Jm” between

Ic
1and 3 Mim~%/2 [4,7,8]. Unfilled thermosetting resins including

epoxy and unsaturated polyester resins also show similar toughness

¢ m em——
T T el T ety W e R

F




-3-

values [4]; tougher polymers include higher impact engineering grades
(for example, ABS and polycarbonate) for which crack bluntening con-

-2

tributes to GIc values of around 3 to 20 kdm ° and filled composites

with G;. often greater than 10 kdm~2 [4]. 5

For materials including glass [9], alumina [10,11] and rigid thermo-
plastics (PMMA [8,12,13], polycarbonate [14] and epoxy resins [15,19]
a convenient method for determining fracture energy and toughness is
the double torsion technique. Uncertainty exists as to whether failure
is of Mode III type (as crack growth is in the x direction) or Mode I
(plausible from crack propagation being nearly parallel to z direction)

but Jayatilaka [20] considers despite the good agreement with G, data

Ic
obtained by other methods that the issue is still unresolved.

In practice the double torsion method is potentially ideal for
cryogenic fracture-toughness measurement. Two major advantages exist:
GIc can be measured independent of crack length, thus reducing much
tedious effort and secdnd]y, the compact compression mode of load
application is easily adapted to incorporate unusual environments.
Alternative crack opening displacement (COD) methods would entail

much more elaborate and less direct techniques.

In this study polybutadiene rubbers crosslinked with either dicumyl
peroxide or sulphur were fractured in liquid nitrogen using the double
torsion method. From a structural viewpoint, these materials are more
readily characterized compared with crosslinked epoxy polymers. The
latter, essentially multicomponent materials, are not easily defined
because linear polymerisation and other uncontrolled side reactions
occur concurrently with curing.

Elastomers are initially well above Tg and so thermodynamically

at equilibrium. Molecular weights and chain architecture can be




readily determined. Crosslinking is in the absence of concommittent
linear polymerization, and the degree of crosslinking in essentially
homogeneous material can be accurately monitored and controlled.
Hence it should be possible for the effects of Mc upon fracture
energy to be unambiguously determined.

In this paper the fracture energy of high-cis-polybutadiene is
measured when immersed in 1iquid nitrogen. Details concerning the
experimental procedure and its validity are included, together with

a brief description of fracture morphology.

2. Experimental Procedure

2.1 Elastomers

In this study the base polymer was "cis-4 1203" polybutadiene (BR)
provided by Phillips Petroleum Co., Bartlesville. Typically this
polymer has a 92% cis content, a Mw of about 380,000 and a poly-
dispersity of 2.1 [21].

“Dicup R" dicumyl peroxide (Hercules Chemical Co., Wilmington)
was dispersed into thin BR crepe, milled and massed. From cure rheo-
meter traces, vulcanization at 150°C for 2h was chosen. Sheets 3 to
5 mm in thickness were made between polyester film, using suitable
plate dies. Crosslink densities were then determined by swelling
in n-heptane, using the Flory-Rehner equation [22] and constants from
Kraus [23]. Details of this group of polymers are summarized in

Table 1. Increase in Monsanto torque has been 1isted at an arbitrary

60 minutes cure time to reflect modulus changes at each level of peroxide.

Sulphur crosslinked BR samples were prepared using basically the
formulation of Henry and Gent [24]. The rubber was premixed at 60 rpm
in a Brabender RE-6 instrument for 2 minutes, followed by addition of

zinc oxide, stearfc acid, TBBS accelerator and sulphur, each at 1 min
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intervals. After a total mix time of 6§ min, the off-white polymer
was passed 10 times on a Farrell mill, before massing and vulcan-
ization. Details of samples at three sulphur levels (chosen to

centre about a typical, commercial value) are provided in Table II.

TABLE I. Peroxide crosslinked BR - formulation and properties

Dicup Level - Change in Monsanto M
parts/100 Torque after 60 mins | (using SG
rubber (1b/4nch) =0.32+.57VR)
0.05 29 61,300 -
0.20 40 6,200 0.90
0.40 55 3,800 0.91
0.60 64 3,300 0.91
1.00 75 3,000 - |
TABLE [I. Sulphur-cured BR - formulation and properties
Sample Code. Sulohur Change in Monsanto| Mc SG
- Torgue after 60
mins. (1b inch)
(Based on 100 parts hydrocarbon)
A 1.0 38 4,900 | 0.95
B 1.5 50 3,700 | 0.95
C 2.0 57 3,200 | 0.94 '

Strips approximately 13 mm wide and 60 mm long were guillotined
for flexural modulus determination at -180°C. Other samples, from

25 to 30 mm wide and from 80 to 100 mm long were prepared for double

torsion testing, as described below.
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2.1 Double torsion test method

Established procedures (for example, described in refs. 9,10)
were varied in that a steel "U" frame was used instead of rollers
to support the test piece and the load was applied via a 6.5 mm
diameter ball bearing attached via a slender probe to the descending
Instron crosshead. Cryogenic experiments were conducted with specimens
resting in 1iquid nitrogen, contained in a flat bottomed aluminium bowl,
separated from the compression cell by a 12.5 mm thick PVC/gypsum
insulating sheet. This assembly was shown by prior compression trials
not to yield significantly under the load range of interest (i.e. up to
about 1 KN). The double torsion test apparatus is illustrated in
Fig. 1. .

Fracture toughness data were obtained in the following manner.

Each rubber specimen had a crack guidance groove inserted using a
jewellers saw and then_ prenotched with a sharp, lubricated blade.

A "sandwich” of the test-piece clamped between 1mm ‘thick steel plates
(to prevent distortion during cooling) was immersed ‘in liquid nitrogen
for about 5 min. The then "lijberated” test-piece was held temporarily
on the U frame using a small weight. Once the bearing began to deform
the test-piece at a controi1ed crosshead speed, the positioning weight
was removed. Using suitable crosshead speeds and specimen dimensions,
the load recorded will increase and then plateau.

Often a fine "saw-tooth" trace is obtained, reflecting at a micro-
scopic level crack initiation and arrest; the difference in load is
normally small and unimportant when approximate GIc values are being
considered. Care needs to be taken to ensure that the test-piece
deforms in the correct manner; plate hinging can arise when the ]
guidance channel is too deep, and trouser tear mode operates when the

load is not evenly distributed onto the two "tines” of the test specimen.




-7-

Dimensions of the cold, fractured test-piece are then taken, and GIc

is determined from value of constant load, P, specimen dimensions &,
D, 8, 8., and modulus G (estimated by 3 point flexing at -180°C, in
separate experiments), using equation 1, where constants correspond
to those used by Williams (25).
3p2g2
e * 2078 8% (1)

In most cases duplicate measurements of GIc were obtained. Crosshead

1

speeds ranging from 0.5 mm min~l to 50 mm min™* were employed.

2.3 Morphology of fracture surfaces

High resolution examination of fracture morphology during and just
after testing was impractical. Macrographs were cbtained of fractured
specimens in both the 1iquid nitrogen and in the cold gaseous environ-
ment just above the Tiquid surface. Subsequently test pieces were
equilibrated at 20°C, gold coated and examined both optically and by
SEM (using a JEOL SM2 instrument).

3. Verification of the Test Procedure

As indicated by Marshall and Williams (8,25), a necessary condition
for legitimate results is that compliance C must be proportional to crack

length a. Calibration can be undertaken to show that -

¢ = E'él:!l a+C

where ( = compliance at crack length
Co = compliance at crack lengtha= o
K = constant incorporating specimen dimensions
E = tensile modulus

and v = Poisson's ratio




-8 -

Where a load versus deflection trace takes the form shown in
Fig. 2, and where subsequent examination of the fracture surface
revezls evenly spaced crack arrest lines (for example, Fig. 3), the

conditions of proportidnality between C and a are met.

4. Results and Discussion

4.1 Load versus displacement (or time) traces.

Before examining chilled rubber samples, PMMA test pieces of
varying dimensions were tested at 20°C using crosshead speeds ranging
from 0.5 mm min~! to 100 mm min“}.  This was undertaken to check that
GIc values consistant with those already published were cbtained, and
also to choose convenient conditions which would be suitable for the
cryogenic studies. From Fig. 4 it can be seen that toughness increases
as strain rate increases for PMMA at 20°C, in much the same way as
indicated by Williams and Hodgkinson (Fig. 2 in [27]). Although test
specimen thickness, channel depth and length of starter notch were
varied, the relatively narrow range of values shown in Fig. 4 indicate
that substantial departures ‘in fracture mechanism are absent. In
essence, results including fracture morphology agreed closely with
those of Hakeem and Phillips [13].

From these preliminary studies, rubber specimens were prepared with
dimensions of B typically 3 to 4 mm, Bc 1-2 mm (with channel width
being about 1 mm) £ was generally fixed at about 12 mm and D ranged
from 14 to 20 mm (all dimensions are of rubber at cryogenic temperatures).
Occasionally the channel was replaced by a sharp lengthwise incision,
again to give Bc about 1.5 mm, but this procedure provided no zdvantage
over the sawn channel method. Finally, starter notches of varying
length were tested, but as a steady load was only obtained after the

crack had grown substantially, no sensitivity to notch length was

B e e e & oot o -
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observed. Unduly long starter notches were avoided as this merely
encouraged specimen warpage during cooling and thus caused experimental
difficulties.

With rubber specimens very deep channels had also to be avoided, as
this led to “hinging", an inappropriate mode of deformation. It was
found that slower crosshead speeds (s5 mm min'l) gave controlled. crack
propagation; a slip-stick trace was often obtained, as shown for
“Cis 4" BR cured with 1 phr sulphur in Fig. 5. As differences
between crack initiation load Pi and arrest load P, were generally
small (less than 5%), for the purposes of estimating G for internal
comparison an average can be taken.

In some experiments a smoother trace was obtained (for example
Fig. 6). This suggests that the mode of failure is changing slightly,
but the emphasis here is to compare the magnitude Jf G with compound

variables and so discussion on this point will come later. It is

* noted that these two load versus displacement traces correspond to
' those shown in Fig. 12 (d) and (f) of Scott et al [19]. However,
one would not expect to see major changes in fracture mechanism in
our case, as temperature and polymer type are fixed. Those traces from
which G data are presented as "legitimate" also include those correspond-
ing to Figs. 12 (c) and occasionally (g) [19].
When higher crosshead speeds (typically 50 mm min'l) are used,
fracture often occurs before stable crack propagation. In these
circumstances, a load versus time trace of the type shown in Fig. 7
is obtained. Maximum Toads sustained by specimens in these circumstances were

thus recorded, and in principle corresponding GIc values can be calculated.

However, these generally low (s5 kdm™2) results are invalid as no stable

crack growth has occurred.
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4.2 Fracture Energy Versus Compound Variables
4.2.1 Peroxide cured polymer

The effect of crosslink density (reflected by Mc) upon Gy
is shown in Fig. 8. It can be seen that there is little sensitivity
with GIc remaining high even at high crosslink densities. This would
suggest that crack-bluntening can still arise by some localized plastic
deformation process. As the specimens are tested slowly at temper-
atures as much as 80° below Tg, it is unlikely that thermal effects
are significant (if compared with data for PMMA by Kambour [28]).

It is highly likely that environmental crazing is occurring
in these experiments, as the phenomena is now well documented for
these [29,30] and related amorphous polymers [31-341. For poly-
dienes, -conditions for crazing are pre-orientation, low strain rates
and test temperatures near the liquification temperature of the
environment [30]. More recently it was shown [29] that pre-oriented
peroxy-crosslinked polybutadiene when strained at 93°K in nitrogen led
to pro]ific, prominent crazing. However when the pre-extension
(normally 100-300%) was not undertaken, brittle behaviour was noted
with no craze formation. When nitrogen was replaced by helium, no
crazing was noted, agreeing with related studies using other polymers
[36]. During crazing, large amounts of gas are absorbed, although the
hypothesis that storage is in craze voids has not been directly sup-
stantiated.

In the double torsion testing, conditions are similar to those
described by Mead et al [29], except that no intended pre-extension
exists (and residual orientation caused by milling and other sample
preparation steps would appear to be no greater than in their experiments),
and double torsion test geometry is rather more complex than simple

uniaxial tensile testing. [In several experiments, the test pieces

i
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were coated with a silicone grease to try to retard nitrogen
penetration, but similar results as for uncoated samples were
obtained.

Despite these aforementioned experimental differences, it is
most 1ikely that the predominant contributor to high fracture energy
is environmental crazing. With the absence of pre-orientation the
extent of crazing is not expected to be as great as indicated by
Mead [29], so that the rubber will be sufficiently embrittled for

double-torsion fracture enerqy measurement to be of some value.

4.2.2 Sulphur-cured polybutadiene

The extremes in practical levels of sulphur are generally
from 1 to 2 parts, and this corresponds to a rather narrow range
of crosslink densities (i.e. M. from 3,200 to 4,900). Fracture
energies are provided for three compounds tested at three crosshead
speeds (Fig. 9). Ignoring the suspect high speed data, it will be
noted that GIC ranges from a little over § kM2 to perhaps about
10 kdM™2. However, as for the heroxide cured samples, no great
sensitivity to crosslink density was again observed. It is con-
sidered that at the maximum crosslink density employed, crazing or
other crack bluntening modes of deformation are possible. The use
of unusually high levels of sulphur to reduce Mc to below 1000 may
cause a change in mode of failure although this step would be of limited
practical importance. For environmental crazing, the rate of uptake of
nitrogen is undiminished and 1ittle change in GIc is expected.

Strain rate effects for this set of polymers were more prongunced
than for the peroxide-cured polymer (Fig. 10). The reason for this

departure is not clear.
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4.3 Morphology of polymer fracture surfaces.

As it was known that liquid nitrogen environmental crazing had
already been reported for similar polymers [29,30] and as fracture
energy values obtained were higher than for many brittle linear
polymers, the test pieces were examined closely during and after
double torsion tensile testing.

Some circumstantial evidence for nitrogen penetration in
cis-polybutadiene was that the bulk material changed from trans-
parent bright yellow to a more opaque cream colour upon chilling.
This change was reversible, with the exterior recovering first. The
cross-section was similar to that shown for polychloroprene (Fig. 6,
(29]).

Fracture surfaces (Fig. 11) macroscopically resemble familiar
mirror-like craze texture obcerved in PMMA and polystyrene. This
pearl-like or opalescent appearance is caused by the differing
refractive index of the essentially spongelike matter compared with
the homogeneous uncrazed bulk [37,38].

When specimens are brought to 20°C, this characteristic craze
sheen is lost, and macroscopically all that can be seen are the
characteristic double torsion fracture zones (Fig. 12) which correspond
to the description by Hakeem and Phillips [13] for PMMA. At higher
magnification no evidence for craze material can be detected (Fig. 13),
although this is hardly surprising, as fine oriented remnants will have
disappeared during the 200°C increase in temperature. The retention
of low temperature structure for the purposes of high resolution micro-

scopy constitutes a major and presently practical challenge.
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5. Conclusions

Crosslinked rubbers with no pre-orientation can be tested by
the double torsion method and estimates of fracture energy obtained.
Under siow strain rate conditions stable crack propagation transpired,
and fracture energy values of about 5 kJM 2 were recorded. This high
value was rather insensitive to both strain rate, crosslink density
and type. The major cause for high toughness is considered to be
liquid nitrogen environmental crazing, although direct high resolution
morphological data is lacking. Further double torsion studies where
inert helium is substituted for nitrogen as the coolant, will be
undertaken to establish the contribution made to fracture energy

by the environment.
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Double torsion test apparatus.

Load versus deflection trace.

Evenly spaced crack arrest lines on fracture surface
of peroxide-crosslinked polybutadiene.

Fracture energy GIC versus strain rate, for PMMA.
Slip-stick trace for cis-BR with 1 phr sulphur,
crosshead speed 0.5 mm min” .

Load versus deflection trace showing more continuous
crack propagation (1.5 phr sulphur, crosshead speed

0.5 mm min']).

Load versus deflection trace - unstable crack growth

at high crosshead speeds.

Effect of crosslink density upon GIC. peroxide cured
polybutadiene. )

Fracture energy versﬁs crosshead speed: sulphur-cured
polybutadiene 4= 1.0 phr, ¥ = 1.5 phr, 0 = 2.0 phr.
Effect of strain rate upon fracture energy peroxide-
cured polybutadienes, &= 09, 0 = 0.2, @= 0.4, 8= 0.6 phr.
Low magnification fracture morphology of peroxide-
crosslinked polybutadiene, in cold nitrogen atmosphere.
Fracture zones of broken double torsion specimens
peroxide-cured polybutadiene.

Scanning electron micrograph of fractured double torsion

specimen at 20°C.
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